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Revisit to the symmetry relations in diffusely backscattered
polarization patterns of turbid media
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As there exists an inconsistency in claiming the symmetrical relations in the 16 Mueller matrix elements
used to describe a turbid medium, the author restudies the symmetrical relationships between diffusely
backscattered polarization patterns in isotropic turbid media and simulates all two-dimensional elements
of diffusely backscattered Mueller matrix in both cases of Rayleigh and Mie scatterings using the double-
scattering approximation and the Monte Carlo algorithm, respectively. The previous experimental ob-
servations are compared with the numerically determined matrix elements, showing a good agreement in
both double-scattering model and Monte Carlo simulation. The symmetrical relations between the Mueller
matrix elements are clarified.

OCIS codes: 170.5280, 290.7050, 290.1350, 290.4210.

There has been an increasing interest in the study of
propagation of light in randomly scattering media, espe-
cially for biomedical applications[1−4]. A number of stud-
ies have shown that by shining a polarized light beam
onto a scattering sample and then analyzing the state
of polarization of the diffusely backscattered light, in-
formation on the properties of a turbid medium can be
obtained[2,4]. In regard to the practical implications, po-
larization techniques are believed to give a simplified ap-
proach for optical imaging of turbid medium compared
with time-resolved methods and, in the meantime, to
provide additional information about the structures of
tissue[5]. However the propagation of polarized light in
randomly scattering media is a complex process. A good
understanding of this process is essential in order to im-
prove the polarization-based techniques.

It is widely recognized that Stokes vectors and Mueller
matrix can provide a complete description of polarized
light and optical turbid media. Both theoretical anal-
ysis and experimental studies have been carried out.
Hielscher et al.[6] used a Stokes vector/Mueller matrix
approach to describe polarized light scattering in order
to achieve a full experimental characterization of the op-
tical properties of a sample under investigation. In a re-
cent theoretical study, Ambirajan et al.[7] used a Monte
Carlo technique to study the degree of polarization of
the diffusely backscattered light emerging from a turbid
media. Rakovic et al.[8,9] and Bartel et al.[10] developed
Monte Carlo algorithms to study the backscattered in-
tensity patterns and compared their simulation results
with the experimental data. All of the above studies
were conducted on the isotropic turbid media without the
consideration of the birefringence effect on polarization.
Most recently, Wang et al.[11−13] used a time-resolved
Monte Carlo technique to characterize the propagation
of polarized light in both homogeneous turbid medium
and linearly birefringent turbid media. Notwithstanding,
there exists an inconsistency in these studies in claim-
ing the symmetrical relations in the 16 Mueller matrix
elements: the experimental results from Hielsher et al.
apparently showed that the off-diagonal backscattered

Mueller matrix elements are all symetric[6,10]; however,
other studies[8,11,14], predominately through theoretical
studies, showed that only some of off-diagonal backscat-
tered Mueller matrix elements are symmetric, whereas
the others are anti-symmetric.

In order to develop a rigorous and accurate method in
both theoretical analysis and experimental studies, the
controversy regarding to symmetrical relations between
the Mueller matrix elements needs to be clarified. There-
fore in the present study the theoretical treatment of the
Mueller matrix representation of the diffusely backscat-
tered patterns with the aid of the double scattering
approach[14] and Monte Carlo simulation technique are to
be revisited, when a Mueller matrix of the turbid medium
is written as

M =

⎡
⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎦ .

It will be shown that in the case of Rayleigh scattering,
the symmetrical relations between off-diagonal backscat-
tered Mueller matrix elements exist; and in the case
of Mie scattering, the off-diagonal elements in the last
row (m14, m24, m34) and last column (m41, m42, m43)
are anti-symmetrical or otherwise almost zero, whereas
the other off-diagonal matrix elements are symmetrical,
based on the restudied analytical calculation and Monte
Carlo simulation results, which are in good agreement
with the published experimental results.

Rakovic and Kattawar demonstrated a relatively sim-
ple analytical double-scattering model[14], which revealed
that double scattered light could be used to predict qual-
itatively the polarization patterns of diffusely backscat-
tered light emerging from turbid media. From its gen-
eral formula derived with this technique, for the effective
backscattered Mueller matrix elements (in the case of
Mie scattering), some of off-diagonal elements are sym-
metrical (such as, m12 and m21, m24 and m42), whereas
the others are anti-symmetrical (such as, m13 and m31,
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m23 and m32, m34 and m43). However, from the previ-
ous experimental observations conducted by Hielscher et
al.[6,10], it was noticed that all the off-diagonal elements
are symmetrical, which means mij = mji.

To study this difference, the double scattering
model[14] is first reconsidered. Let S0 = [I0, Q0, U0, V0]T
be the Stokes vector that corresponds to the irradiance
of incident light with respect to the x-z plane (reference
plane) with z being the incident beam direction. By Ref.
[14], under the assumption that the scattering of light
is incoherent and the contribution to the backscattered
light that comes from the multiply scattered photons is
small, after double scattering, in which, after the sec-
ond scattering, photons exist in the medium, which is as-
sumed to occupy the lower half space, z ≤ 0, the Stokes
vectors of the backscattered light, Sbs′

2 (ρ, φ), in the scat-
tering plane can be written as

Sbs′
2 (ρ, φ) = L2(ρ)R(−φ)S0,

L2(ρ) = μ2
s

∫ 0

−∞

∫ 0

−∞

dzdz′

r2

×{exp[−μt(|z| + |z′| + r)]M(π − θ)M(θ)}, (1)

where r = [ρ2 + (z − z′)2]1/2, tan θ = ρ/(z − z′), ρ is
the distance on the surface of the media between in-
coming beam and backscattering light, μt and μs are
the extinction and scattering coefficients, respectively,
M(θ) is the Mueller matrix that describes the scattering
process[14−16], and R(φ) is the standard 4×4 matrix that
rotates the reference plane, which is given by[14,15]

R(φ) =

⎡
⎢⎣

1 0 0 0
0 cos(2φ) sin(2φ) 0
0 − sin(2φ) cos(2φ) 0
0 0 0 1

⎤
⎥⎦ . (2)

When the x-z plane is chosen to be the reference plane
for the backscattered light, the Stokes vectors of the
backscattered light in the scattering plane have to be
rotated back to x-z plane. To realize this movement
of rotating back, in Ref. [14], following standard rota-
tion about the reference plane (in the sense of direction
of propagation), the Stokes vectors of the backscattered
light in Eq. (1) were written as

Sbs
2 (ρ, φ) = R(−φ)Sbs′

2 (ρ, φ), (3)

then the effective Mueller matrix, when the x-z plane is
also chosen to be the reference plane for the backscat-
tered light, takes the form of

M(ρ, φ) = R(−φ)L2(ρ)R(−φ). (4)

It is easy to prove that the symmetries of the off-
diagonal elements in Eq. (4) are not same[14].

In the following, this movement of rotating back is re-
considered. Rotation matrix R(φ) (Eq. (2)) actually con-
nects the two Stokes vectors that describe the same polar-
ization state of the light but with the two reference planes
such that the first reference plane coincides with the sec-
ond one after a rotation by an angle φ. Then the inverse

transformation, that gives the Stokes vector in the second
reference plane in terms of its value in the first reference
plane, can be obtained by the inverse operation R−1(φ)
(= R(−φ)). Because the projections of any electric-field
vector in these two defined reference plane systems are
interrelated, independent of the direction of light propa-
gation, the Stokes vectors in these two reference planes
are related to each other through corresponding rotation
matrix R(φ) or R(−φ). By this consideration of rotation
about the reference plane, when the x-z plane is also cho-
sen to be the reference plane for the backscattered light,
the Stokes vectors of backscattered light in Eq. (1) should
now be written as

Sbs
2 (ρ, φ) = R(φ)Sbs′

2 (ρ, φ). (5)

The rotation angle is φ, as this is the inverse transfor-
mation compared with the transformation for the inci-
dent beam. Then the effective Mueller matrix takes the
form

M(ρ, φ) = R(φ)L2(ρ)R(−φ). (6)

Assuming that the light is scattered in the turbid
medium by spheres, the single-scattering Mueller matrix
M(θi) in Eq. (1) takes a relatively simple form[15,16]:

M(θi) =

⎛
⎜⎝

a(θi) b(θi) 0 0
b(θi) a(θi) 0 0

0 0 d(θi) −e(θi)
0 0 e(θi) d(θi)

⎞
⎟⎠ , (7)

where the four independent elements, a, b, d, and e, ex-
pressed in terms of a series of Bessell functions, are de-
pendent on the scattering angle θi , the refractive indices
nmed and n0 of the medium and scatterers, respectively.
When the particles (spheres) are sufficiently small rel-
ative to the light wavelength (in the case of Rayleigh
scattering), the coefficients reduce to[12−14]

a(θ) =
3
16

(1 + cos2 θ), b(θ) =
3
16

(−1 + cos2 θ),

d(θ) =
3
8

cos θ, e(θ) = 0. (8)

In this case it will be easy to prove that all the off-
diagonal elements in Eq. (6) are symmetric (except the
elements in the last row (m14, m24, m34) and last col-
umn (m41, m42, m43) which are all zero) (see Fig. 1(a)).
Clearly, the symmetry differences are due to the different
manners in dealing with the rotations with regard to the
reference plane.

Based on the method of Bartel and Hielscher[10], the
Monte Carlo programs for simulation of polarized light
in an isotropic turbid medium are modified according to
that of Wang et al.[17] in order to take into account of
the principle of Stokes-Mueller formalism including po-
larization effect.

Supposing a photon is injected orthogonally into an
isotropic turbid medium at the origin, which corresponds
to a collimated arbitrarily narrow beam of photons.
The position and direction of the photon is initialized
in the global system (i, j,k) with the Cartesian coor-
dinates (x, y, z) = (0, 0, 0) and the directional cosines
(ux, uy, uz) = (0, 0, 1). Once a step size si is specified,
the photon is ready to be moved in the medium. To keep
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Fig. 1. Diffusely backscattered Mueller matrix elements of
an isotropic medium with smaller spheres (in the case of
Rayleigh scattering) based on an analytic double-scattering
model. All the images displayed are 1×1 (mm). (a) M(ρ, φ) =
R(φ)L2(ρ)R(−φ); (b) M(ρ, φ) = R(−φ)L2(ρ)R(−φ).

track of a polarization state as a photon undergoes mul-
tiple scattering events, it is assigned the four-component
Stokes vector S′

i and a local coordinate system (ei
r, e

i
l, e

i
3)

in which S′
i is defined. The prime corresponds to a

different reference plane from the x-z reference plane (in
the globe system (i, j,k)).

After a large number, n, of scattering events, Stokes
vector of the exiting photons at the detector S′

n is given
in a randomly oriented coordinate system (en

r , en
l , en

3 ),
which must be determined in terms of the global system
(i, j,k). Following the above consideration on rotating
reference plane and by keeping track of the local coordi-
nate system, the polarization state described by S′

n can
also be described by

Sn = R(φ1)R(φ2) · · ·R(φn−1)S′
n = R

(
n−1∑
i=1

φi

)
S′

n, (9)

which corresponds to the backscattered light with re-
spect to the x-z reference plane in the global system
(i, j,k). Because the Stokes vectors are additive, after
tracing multiple photon packets, they may simply be
summed up in the two-dimensional gird system to yield
the average answer of the medium. The exiting photons
with any exiting angles are collected onto the detector.

The patterns of 16 matrix elements for backscattered
light calculated by the double-scattering model Eq. (6),
and the Eq. (4) in Ref. [14] are shown in Figs. 1(a) and
(b) for the isotropic turbid media with small scatter-
ing spheres (in the case of Rayleigh scattering), respec-
tively, where each map shows the spatial distribution of
a Mueller matrix element in a designed colour scale. The
parameters chosen as Ref. [12,13] for these calculations
were: the absorption coefficient μa = 0.1 cm−1, the scat-
tering coefficient μs = 100 cm−1, the refractive index of
the medium nmed = 1.330, and the wavelength of the
light λ = 594 nm. The main differences between Figs.
1(a) and (b) are the symmetrical relationships between
the off-diagonal elements and the shapes of diagonal el-
ements m22 and m33. With the same parameters for the
turbid medium used for the double scattering model and
the thickness of the medium slab d = 0.2 cm as Ref.
[12,13], Fig. 2 illustrates the Mueller matrix elements re-
sulting from the Monte Carlo simulations for the isotropic
turbid media with small scattering spheres whose size is
204 nm in diameter (in the case of Rayleigh scatter-
ing), with Fig. 2(a) using φi and Fig. 2(b) using −φi,
respectively, in Eq. (9). It results in a same symmetrical

Fig. 2. Diffusely backscattered Mueller matrix elements of
isotropic media with smaller spheres (in the case of Rayleigh
scattering) based on Monte Carlo algorithm. All the im-

ages displayed are 1 × 1 (mm). (a)Sn = R

�
n−1�
i=1

φi

�
S′

n; (b)

Sn = R

�
−

n−1�
i=1

φi

�
S′

n.

relationship between the matrix elements in Fig. 2 to that
that of double scattering model in Fig. 1. By compar-
ing with the results of Hielscher et al.[6,10] for the case
of Rayleigh scattering, Figs. 1(a) and 2(a) demonstrate
excellent agreement with the experiment in shapes and
symmetries of the images.

Actually, the symmetrical relations between the off-
diagonal elements can be proved in a more general way.
Let the plane of reference be (instead of the fixed x-z
plane) the plane containing the incoming and backscat-
tered light beam. Then the Stokes vector of the backscat-
tered light in this plane is written as

Sbs′(ρ, φ) = M ′(ρ, φ)S′
0. (10)

By simultaneous equal rotations of the input and out-
put reference planes (which are the same at the moment)
with the same angle φ using present consideration of
the reverse rotation of the reference plane, the effective
Mueller matrix after the rotation will be[18]

M(ρ, φ) = R(φ)M ′(ρ, φ)R(−φ). (11)

Now, axial symmetry of the system is expressed by
the fact that the matrix M ′(ρ, φ) does not depend on
φ, i.e.[19],

M ′(ρ, φ) = L(ρ) =
∞∑

n=2

(
μs

μt

)n−2

Ln(μtρ), (12)

where the term Ln corresponds to the backscattered light
that has been scattered n times. It follows that the
effective Mueller matrix takes the form

M(ρ, φ) = R(φ)L(ρ)R(−φ). (13)

Following the procedure in Ref. [8], it will be easy
to obtain the following symmetrical relations for the
off-diagonal Mueller elements in an optically inactive
medium:

m12 = m21, m13 = m31, m14 = −m41,

m23 = m32, m24 = −m42, m34 = −m43. (14)

Except the off-diagonal elements in the last row (m14,
m24, m34) and last column (m41, m42, m43) that are
all anti-symmetrical, the other off-diagonal elements are



670 CHINESE OPTICS LETTERS / Vol. 4, No. 11 / November 10, 2006

Fig. 3. Simulated backscattered Mueller matrix for the
isotropic turbid medium in the case of Mie scattering based
on Monte Carlo algorithm. All the images displayed are 1×1

(mm). Sn = R

�
n−1�
i=1

φi

�
S′

n.

symmetrical. In fact, Eq. (6), i.e., the double scattering
treatment, is a special case for Eq. (13).

Figure 3 displays the Monte Carlo simulated Mueller
matrix patterns of light backscattered from an isotropic
turbid medium in which the size of the scattering spheres
is 700 nm in diameter (in the case of Mie scattering).
Other parameters are the same as those used for Fig. 2.
Comparing the results from Monte Carlo simulation, i.e.
Fig. 3, with the analytical results (Eq. (14)), an excellent
agreement between them is achieved. However, it should
be noted that in Fig. 3 the off-diagonal elements in the
last row (m24, m34) and last column (m42, m43) that are
all anti-symmetrical do not agree with the experimental
results from Hielscher et al.[6] for larger particles (in the
case of Mie scattering). The reason may be that the val-
ues for these elements are approaching to zero, and as
such it will not be obvious to show the correct azimuthal
variations in the form of relative intensity in the experi-
ments.

In the theoretical studies[8,14], the choice of the ref-
erence coordinate systems in polarizer may be different
from the experiments[6]. The symmetry of off-diagonal
elements is identical when they are associated with the
reference systems. Actually, if we alternate the refer-
ence coordinate system for the backscattered light in Ref.
[14] to the reference coordinate system in the experiment,
which can be realized by multiplying the Mueller matrix
of a mirror in Eq. (3) as well as Eq. (4), the symmetry of
off-diagonal elements is same for Eqs. (4) and (6).

In conclusion, the propagation of the polarized light
in the isotropic turbid media was restudied based on
the analytic double-scattering model[14] and Mote Carlo
algorithm[10]. The symmetrical relations of the polariza-
tion patterns of backscattered light in the isotropic media
were analyzed. Results from turbid medium with smaller
particles (in the case of Rayleigh scattering) and larger
particles (in the case of Mie scattering) were compared
with the published experimental results and discussed.
The theoretical treatment presented in the current study
may contribute to clarification of the rotations about ref-
erence plane in the essential physical processes of polar-
ized light propagation in the turbid media. These rota-

tions that should be carefully considered may result in
different symmetrical relations between the off-diagonal
backscattered Mueller matrix elements in theory, which
has been presented in this paper.

The author is grateful to Dr. Lihong Wang and Dr.
Ricky Wang for their useful comments. This research
was made possible with the 2005 Financial Support from
the Beijing Ministry of Personnel for Returned Scholars
and Students. Y. Feng’s e-mail address is fengyinqi@
bipt.edu.cn.

References

1. S. Cheng, H. Shen, and M. Chen, Chin. J. Lasers (in
Chinese) 31, 169 (2004).

2. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, Appl.
Opt. 36, 125 (1997).

3. M. Chen, J. Chen, L. Kou, and Z. Xu, Chin. J. Lasers
(in Chinese) 24, 342 (1997).

4. S. G. Demos and R. R. Alfano, Appl. Opt. 36, 150
(1997).

5. V. Tuchin, Tissue Optics: Light Scattering Methods
and Instrments for Medical Diagnosis (SPIE Press,
Bellinham, Washington, 2000).

6. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J.
P. Freyer, and I. J. Bigio, Opt. Express 1, 441 (1997).

7. A. Ambirajan and D. C. Look, J. Quant. Spectrosc.
Radiat. Transfer 58, 171 (1997).

8. M. J. Raković, G. M. Kattawar, M. Mehrübeoǧlu, B.
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Appl. Opt. 38, 3399 (1999).

9. G. M. Kattawar, M. J. Raković, and B. D. Cameron, in
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